Где вырабатывается клеточная энергия. Основные источники энергии в клетке

Энергетический обмен: его этапы, последовательность, значение для клетки

Где вырабатывается клеточная энергия. Основные источники энергии в клетке

  • Что такое АТФ?
  • Этапы энергетического обмена
  • Подготовительный этап энергетического обмена
  • Бескислородный этап энергетического обмена
  • Кислородный этап энергетического обмена
  • Энергетический обмен, видео
  • Энергетический обмен в клетке представляет собой общую деятельность химических реакций при распаде органических веществ. При этом происходит освобождение энергии, которая впоследствии идет на синтез аденозинтрифосфорной кислоты (АТФ). Значение энергетического обмена в биологии велико, именно с его помощью осуществляется клеточный метаболизм, а сама клетка обеспечивается необходимой энергией для ее функционирования и поддержания жизни.

    Что такое АТФ?

    Аденозинтрифосфорная кислота (она же АТФ) является постоянным источником энергии для клетки. Деятельность АТФ начинается с реакции фосфорилирования – добавления атомов фосфорного соединения к молекулам аденозиндифосфата (АДФ).

    Вот так выглядит строение молекулы АТФ.

    Как результат, расходуемая энергия накапливается в связях АДФ, чтобы после ее распада и гидролиза (взаимодействия с водой) поступить в материю в количестве 40 кДж. Говоря по простому, распад органических веществ способствует выделению энергии. А само выделение энергии, энергетический обмен, проходит через две или три стадии. И тут мы переходим к следующему пункту.

    Этапы энергетического обмена

    В целом существует три этапа энергетического обмена:

    • Подготовительный.
    • Безкислородный.
    • Кислородный.

    Так эти этапы или фазы энергетического обмена выглядят схематически:

    Но есть исключение. Таким исключением являются организмы, живущие без воздуха, так как они не нуждаются в поступлении кислорода, то энергетический обмен у них происходит только в два этапа. Кислород в этом процессе не участвует.

    Далее мы детально рассмотрим все этапы ЭО в живой природе.

    Подготовительный этап энергетического обмена

    На этой фазе совершается распад больших пищевых полимеров на более мелкие образования. В желудочно-кишечном тракте многоклеточных существ осуществляется ферментативный пищеварительный распад, в то время как у существ одноклеточных он происходит при помощи лизосом (клеточных органоидов, ответственных за расщепление биополимеров).

    В это же время полисахариды (высокомолекулярные углеводы) распадаются на дисахариды и моносахариды. Затем белки превращаются в аминокислоты, а жиры в чистый глицерин и прочие жирные соединения.

    В результате описанных выше преобразований образуется определенное количество энергии в виде тепла. АТФ при этом еще не образуется. Зато полученные мономеры могут участвовать в метаболизме для синтеза веществ, необходимых для получения силы.

    Живая материя использует, прежде всего, углеводы, в то время как жиры, будучи источником энергии первого резерва, исчерпываются по окончании углеродного запаса. Исключением выступают скелетные мышцы, в них предпочтение отдается наличию жиров, а не глюкозе. Белки при этом расходуются гораздо позже, уже после исчерпания запасов углеводов и жиров.

    Бескислородный этап энергетического обмена

    Также второй этап энергетического обмена называется гликолизом. Происходит он в цитоплазме. роль здесь отведена глюкозе, она же является основным источником освобожденной энергии.

    Анаэробный гликолиз осуществляется благодаря безкислородному распаду собственно глюкозы, с целью ее превращения в лактат.

    Уставшие спортсмены после интенсивной тренировки зачастую чувствуют это вещество в своих мышцах.

    Также на этом этапе происходит ферментативное деление органических частиц.

    Гликолиз представляет собой многоуровневый процесс бескислородного распада частиц глюкозы. Сама же глюкоза содержит шесть элементов водорода и две единицы пировиноградного соединения.

    Так выглядит гликолиз глюкозы.

    В ходе гликолиза при распадении 1 моля глюкозы выделяется 200 кДж энергии, 60% которых освобождается в виде тепла, а оставшиеся 40% идут на синтез нескольких частиц АТФ из нескольких частиц АДФ.

    Если же в окружении пировиноградного соединения вдруг оказывается кислород, то он переходит из цитоплазмы в митохондрию, еще один важный клеточный органоид, где проходит его участие в 3 этапе энергетического обмена клетки.

    Кислородный этап энергетического обмена

    Кислородный энергетический обмен более сложный, нежели гликолиз, он имеет более сложную структуру, проходит в несколько этапов, являясь, по сути, многоуровневым процессом при участии большого числа ферментов.

    В окончании третьего этапа формирования энергии из двух частиц СН3(СО)СООН получается CO2, Н2О и 36 элементов АТФ. Для АТФ создается запас в процессе бескислородного распада C6H12O6.

    3 этап энергетического обмена.

    Энергетический обмен, видео

    И в завершение образовательное видео по теме нашей статьи.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/biologiya/energeticheskiy-obmen/

    Космос внутри нас: Электростанция живой клетки

    Где вырабатывается клеточная энергия. Основные источники энергии в клетке

    История науки располагает классическими образцами опытов, простота и наглядность которых разбивала все отрицания скептиков, в полной мере демонстрируя физическую суть явлений. Но, чтобы провести достаточно убедительные опыты по демонстрации выработки клеткой электрической энергии, биохимикам суждено было пройти тернистый путь.

    Технология превращения энергии света в электричество никого сегодня не удивляет. Нет ничего сверхъестественного в устройстве фотоэлемента. Но существует естественный фотоэлемент, созданный матушкой-природой.  В нем преобразуют энергию части бактерий под названием родопсин. Данное явление с чистой совестью можно назвать электростанцией живой природы. 

    Живая электростанция

    Вот вам пример того, что природа намного раньше людей пришла к пониманию широкого спектра возможностей, которые скрывает в себе использование электрической энергии, и применила их для превращения энергии на уровне клеток живых существ и растений.  

    Подписывайтесь на наш аккаунт в INSTAGRAM!

    Детектив в биохимических тонах

    До настоящего времени ученые не выяснили до конца механизм такой линий связи как энергоснабжение клетки. Давно понятно, что клетка поглощает транспортируемые из внешней среды питательные вещества — субстраты — и окисляет их.

    В ходе этого процесса и выделяется определенное количество энергии. На следующем этапе происходит еще целый ряд мало изученных преобразования, в итоге которых возникают молекулы АТФ—аденозинфосфата.

    АТФ можно смело назвать универсальной клеточной валютой, унифицированной энергией, которую клетка накапливает, делая «запас» и позже расходует при необходимости.

    Все энергетические процессы идут во внутренних мембранах митохондрий (это такие особые образования в клетке). Биохимикам давно известен данный факт. Но каким образом осуществляется трансформация энергии, какие идут сопутствующие процессы, какие неведомые пути и средства использует природа —   ученые пока не знают.

    Изначально имела место версия, что транспортером энергии выступает особое вещество сродни теплороду физики XVIII века.

    Биохимики создали ряд моделей этого предположительного процесса, стройных и логичных схем, но, к сожалению, не подтвержденных экспериментально.

    В итоге биоэнергетика зашла в такой себе тупик, который, по словам великого физика Нильса Бора, представляет плодородную почву для сумасшедших идей.

    И одна из таких идей как раз возникла. Английский биохимик П. Митчел выдвинул гипотезу, что в процессе окисления «клеточной еды» мембрана митохондрий заряжается электричеством, а ферменты-окислители при этом выступают в роли своеобразных топливных элементов.

    Далее выработанное и накопленное клеткой электричество тратится на синтез молекул АТФ. Гипотеза основывалась лишь на диэлектрических свойствах мембраны, которая обладает большим электрическим сопротивлением и емкостью, представляя, таким образом, классический электрический конденсатор.

    Если отталкиваться от мысли о целесообразности природных конструкций, это можно принять в качестве доказательства.

    Однако, научный мир на представленные аргументы никак не прореагировал, считая диэлектрические возможности мембран митохондрий банальным совпадением.

    В итоге идея Митчела при всей своей логической стройности, что называется, повисла в воздухе и, возможно, ее постигла бы участь множества других непризнанных научных гипотез, если бы не эксперименты ученых — В. Скулачева и Е. Либермана (они сразу после обнародования «электрической теории» стали на ее защиту).

    И именно благодаря этим ученым проявились неизвестные до того времени характеристики биоэнергетики клеток. Вроде бы все выглядело очевидными. И не надо быть геним, чтобы спланировать опыт на живой клетке. Дайте ей питание, чтобы запустился процесс окисления.

    Установите разницу потенциалов, возникшую на мембране. Теперь, подав на вторую, мембрану, у которой не было питания, аналогичное электрическое поле, надо пронаблюдать — станет ли она синтезировать молекулы АТФ.

    Но, к сожалению, опыты такого рода нереальны. В природную мембрану проникнуть невозможно —  она необычайно тонка. Пришлось прорабатывать другие пути.

    Подписывайтесь на Эконет в Pinterest!

    Сначала ученые В. Окулачев и Е. Либерман доказали, что заданные вещества, которые препятствуют формированию молекул АТФ, одновременно оказывают электрическое действие, снижая сопротивление мембран. Так конденсатор утрачивает свои свойства аккумулировать электроэнергию, и синтез молекул АТФ угнетается в зачатке. Совпадение, — сказали хором противники теории.

    Ученые на этом не остановились. Е. Либерман и В. Скулачев, трудясь в своих лабораториях, испытали до 40 соединений различной структуры, имеющих свойство снижать сопротивление синтетических мембран (ученые создали эти искусственные мембраны). Опираясь на результаты, Е. Либерман и В.

    Скулачев попытались сделать прогноз, как данные вещества будут воздействовать на функционирование живых митохондрий. 

    Величие научной теории в том, как она трактует известные до ее возникновения механизмы, но и в возможности спрогнозировать явления неизвестные и новые. В описываемых опытах совпадение было безупречным.

    Но скептики снова не верили. В. Скулачев и Е. Либерман захотели доказать, что в процессе питания митохондрий реально возникает электрическое поле.

    Но в конспектах схема опыта была простой, и снова природа отказалась помочь эксперименту.

    Идея была такова. Использовать в эксперименте раствор заряженных электрически частиц — ионов и засылать в раствор приготовленный порошок из митохондрий. Если теперь подпитать их привычным для митохондрий веществом, возникнет электрическое поле. Поле должно втянуть внутрь мембран некоторые ионы. Это можно зафиксировать.

    Но реальность оказалась не благосклонной к людям науки. Суть в том, что мембраны митохондрий ведут себя специфически и не признают посторонних ионов. Хотя, для ряда ионов мембраны не препятствие. Но пропуском являются не электрические, а именно химические свойства. Сигнал к проникновению идет, когда мембрана распознает химическую особенность нужных ей веществ.

    А ионов с такими свойствами в природе не нашлось.

    Их изготовить решился Е. Либерман. В итоге в его лаборатории «родились» синтетически созданные, способные проникать сквозь перегородки мембран митохондрии. Как раз коллеги В. Скулачева изготовили и искусственные мембраны, немного толще естественных.

    Можно было проводить новый опыт. И он прошел успешно. Ученые все-таки доказали, что митохондрии, приняв «еду», сразу зарядились электрически и вытягивали из раствора ионы. Теперь ученые решили представить более весомые доказательства.

    Они приняли решение измерить электрическое поле на самой мембране. 

    Материализация духов 

    История науки располагает классическими образцами опытов, простота и наглядность которых разбивала все отрицания скептиков, в полной мере демонстрируя физическую суть явлений.

    Но, чтобы провести достаточно убедительные опыты, биохимикам суждено было пройти тернистый путь кропотливого труда, когда они смогли нашпиговать ферментами синтетические мембраны, приближающиеся по свойствам к природным.

    Тонкая пленка (мембрана) разделяет на два отсека сосуд из стекла. В каждом из отсеков находится раствор электролита, и в каждом из отсеков — электрод, который соединен с клеммой вольтметра.

    Электроды должны подать сигнал, что мембрана стала заряженным конденсатором, а химическая энергия окисления трансформировалась в электрическую. Ферменты есть с обеих сторон плоской мембраны. Условия одинаковые.

    Крошечные электробатареи, местами вкрапленные в мембрану, разобщены.

    Из состояния покоя схему выводит «еда», которая поступает на одну сторону мембраны посредством раствора электролита. Ферменты, находящиеся там, поглощают поданную им аскорбиновую кислоту и немедленно вступают в «работу». Они вырабатывают электроэнергию. Теперь всё стало ясным. Стрелка прибора мгновенно фиксирует, что энергетический процесс начался.

    То, что ранее было загадкой биохимии, стало очевидным. Специалист посредством лабораторной пипетки вводит витамин С. «Еда» без промедления поглощается ферментами, возрастает накопление электричества, сохраняемого естественным конденсатором — митохондриальной мембраной.

    И стрелка вольтметра приходит в движение, наглядно показывая, как возрастает мембранный потенциал.

    Теперь нужна еще одна пипетка. Первая давала ферментам еду, во второй находится яд — раствор цианистого калия. Он может моментально угнетать работу ферментов. И ферменты, до сих пор вырабатывавшие электричество, замирают. Они уже не могут воспринимать аскорбиновую кислоту, их погубили. И стрелка прибора замирает.

    Одновременно каплей витамина С «запускаются» ферменты противоположной стороны мембраны, чтобы тоже замереть после принятия яда. Очевидность эксперимента, проделанного для четырех видов ферментов, шокировала специалистов. Очертания концепции стали ясны.

    Живая клетка несет две формы энергии — химической в представительстве АТФ и физической, представляемой потенциалом мембраны. В местах мембран митохондрий находятся так называемые «топливные элементы» — электрогенераторы, которые преобразуют энергию окисления в электрическую. Все эти источники тока могут работать одновременно.

    И электроэнергия, вырабатываемая любым из источников, используется клеткой по ее по собственному усмотрению. Клетка может осуществлять химическую деятельность, продуцируя молекулы АТФ.

    Клетка может работать механически, получая внутрь своей мембраны необходимые вещества. Она может обогреваться, трансформируя выработанное электричество в тепло.

     Главным преимуществом электроэнергии является, что она способна без труда трансформироваться и преобразовываться в другие виды. Видимо, природа об этом знает сама.

    У в мире науки гипотеза Митчела получила исчерпывающее практическое подтверждение.

    Многие явления и процессы, которые разум человека постигал столетиями, элементарно работают в условиях живой природы. Наглядным примером является выше описанное открытие.

    Процесс получения электрической энергии отработан на клеточном уровне и действует идеально.

    Но ученые со своим пытливым умом и терпением смогли проникнуть в тайны микромира и наглядно представили вниманию людей секреты процесса, ревниво оберегаемые самой природой.опубликовано econet.ru.

    Задайте вопрос по теме статьи здесь

    P.S. И помните, всего лишь изменяя свое потребление – мы вместе изменяем мир! © econet

    Источник: https://econet.ru/articles/kosmos-vnutri-nas-elektrostantsiya-zhivoy-kletki

    Обеспечение клеток энергией. Источники энергии

    Где вырабатывается клеточная энергия. Основные источники энергии в клетке

    Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

    Обеспечение клеток энергией: как это происходит?

    Немногие клетки получают энергию извне, они вырабатывают ее сами. Эукариотические клетки обладают своеобразными “станциями”. И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания.

    За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

    Строение митохондрии

    Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой прокариотической клетки. Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

    Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

    То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

    Клеточное дыхание — основа жизни

    Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

    Первый этап — подготовительный

    Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

    Гликолиз

    Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата.

    Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы АТФ (аденозинтрифосфорной кислоты) и две молекулы ПВК (пировиноградной кислоты).

    Энергия клетки и запасается именно в виде АТФ.

    Весь процесс гликолиза можно упрощенно изобразить таким образом:

    2НАД+ 2АДФ + 2Н3РО4 + С6Н12О6 2Н2О + 2НАД.Н2 +2С3Н4О3 + 2АТФ

    Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

    Третий этап — окисление

    Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть клеточного дыхания, во время которой высвобождается больше всего энергии.

    На этом этапе пировиноградная кислота, вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ.

    Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

    Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

    6О2 + С6Н12О6 + 38АДФ + 38Н3РО4 6СО2 + 6Н2О + 38АТФ.

    Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

    Разнообразие ферментов митохондрий

    Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов.

    Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание.

    Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

    Все оксидоредуктазы можно разделить на две группы:

    Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

    Оксидазы более разнообразны. В первую очередь они делятся на две группы:

    • те, которые содержат медь;
    • те, в составе которых присутствует железо.

    К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

    • цитохромы a;
    • цитохромы b;
    • цитохромы c;
    • цитохромы d.

    Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

    Возможны ли другие пути получения энергии?

    Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения.

    Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций.

    Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

    Для примера рассмотрим спиртовое брожение. Его можно выразить вот таким уравнением:

    С6Н12О6 С2Н5ОН + 2СО2

    То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

    Источник: https://FB.ru/article/222487/obespechenie-kletok-energiey-istochniki-energii

    Энергетический обмен или откуда берется энергия для организма?

    Где вырабатывается клеточная энергия. Основные источники энергии в клетке

    За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить  самым любопытным жизнь и сэкономить время.  Поехали…

    Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

    Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

    АТФ + H2O     ⇒    АДФ + Ф + Энергия

    Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

    Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье «Пульс для бега и пульс при физической нагрузке (Пульсовые зоны)«.

    Выделяют три энергетические системы, обеспечивающие физическую работу человека:

    1. Алактатная или фосфагенная (анаэробная). Связана с процессами ресинтеза АТФ преимущественно за счет высокоэнергетического фосфатного соединения – КреатинФосфата (КрФ).
    2. Гликолитическая (анаэробная). Обеспечивает ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена и/или глюкозы до молочной кислоты (лактата).
    3. Аэробная (окислительная). Возможность выполнения работы за счет окисления углеводов, жиров, белков при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

    Энергообеспечение организма человека.

    Источники энергии при кратковременной работе.

    Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

    АТФ + H2O     ⇒     АДФ + Ф + Энергия

    В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин.

    В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

    Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

    Выглядит это так:

    АДФ+ КрФ   ⇒   АТФ + Кр

    Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек.  Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить  путем тренировок  до 15 секунд.

    Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно.

    Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц.

    Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

    Источники энергии при непродолжительной работе.

    Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

    Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями — аэробным и анаэробным.

    При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме.

    Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса  обеспечивая дыхание в клетке.

    У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

    Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме.

    Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция.

    Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

    Если кислорода недостаточно, то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

    Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность  через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту. 

    Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

    Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

     Гликоген    ⇒     АТФ + Молочная кислота  

    Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону.

      При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности.

    Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

    Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

    Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

    Источники энергии при продолжительной работе.

    Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе.

    Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега.

    Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

    При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

    Гликоген + Кислород   ⇒     АТФ + Углекислый газ + Вода

    Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной  и непродолжительной работе.

    Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса.

    Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

    Жир + Кислород  ⇒    АТФ + Углекислый газ + Вода

    Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ.  Но происходит это гораздо медленнее.

    К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов.

    Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.  

    Больше полезной информации и статей вы можете найти ЗДЕСЬ.

    Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

    1. Самый маленький бак – КреатинФосфат (это как 98 бензин). Он находится как бы ближе к мышце и запускается в работу быстро. Этого «бензина» хватает на 9 сек. работы.
    2. Средний бак – Гликоген (92 бензин). Этот бак находится чуть дальше в организме и топливо из него поступает с 15-30 секунды физической работы. Этого топлива хватает на 1-1,5 часа работы.
    3. Большой бак – Жир (дизельное топливо). Этот бак находится далеко и прежде, чем топливо начнет поступать из него пройдет 3-6 минут.  Запаса жира в организме человека на 10-12 часов интенсивной, аэробной работы.

    Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

    Источник: http://maximbuvalin.ru/vse-o-bege/jenergeticheskij-obmen-ili-otkuda-beretsja-jenergija-dlja-organizma/

    Поделиться:
    Нет комментариев

      Добавить комментарий

      Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.