Формулы всех форм сокращенного умножения. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Формулы сокращенного умножения: таблица, примеры использования

Формулы всех форм сокращенного умножения. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Формулы сокращенного умножения. Таблица

Впервые тема ФСУ рассматривается в рамках курса “Алгебра” за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a+b2=a2+2ab+b2
  2. формула квадрата разности: a-b2=a2-2ab+b2
  3. формула куба суммы: a+b3=a3+3a2b+3ab2+b3
  4. формула куба разности: a-b3=a3-3a2b+3ab2-b3
  5. формула разности квадратов: a2-b2=a-ba+b
  6. формула суммы кубов: a3+b3=a+ba2-ab+b2
  7. формула разности кубов: a3-b3=a-ba2+ab+b2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы – соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы. 

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул. 

Во-первых, рассмотрим формулу бинома Ньютона.

a+bn=Cn0·an+Cn1·an-1·b+Cn2·an-2·b2+..+Cnn-1·a·bn-1+Cnn·bn

Здесь Cnk – биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля.  Биномиальные коэффициенты вычисляются по формуле:

Cnk=n!k!·(n-k)!=n(n-1)(n-2)..(n-(k-1))k!

Как видим, ФСУ для квадрата и куба разности и суммы – это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a1+a2+..+an2=a12+a22+..+an2+2a1a2+2a1a3+..+2a1an+2a2a3+2a2a4+..+2a2an+2an-1an

Как читать эту формулу? Квадрат суммы n слагаемых равен сумме квадратов всех слагаемых и удвоенных произведений всех возможных пар этих слагаемых.

Еще одна формула, которая может пригодится – формула формула разности n-ых степеней двух слагаемых.

an-bn=a-ban-1+an-2b+an-3b2+..+a2bn-2+bn-1

Эту формулу обычно разделяют на две формулы – соответственно для четных и нечетных степеней. 

Для четных показателей 2m:

a2m-b2m=a2-b2a2m-2+a2m-4b2+a2m-6b4+..+b2m-2

Для нечетных показателей 2m+1:

a2m+1-b2m+1=a2-b2a2m+a2m-1b+a2m-2b2+..+b2m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n=2 и n=3 соответственно. Для разности кубов b также заменяется на -b.

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

a+b2=a2+2ab+b2.

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a-b2=a2-2ab+b2  запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Опиши задание

Прочитаем формулу a+b3=a3+3a2b+3ab2+b3. Куб суммы двух выражений a и b равен сумме кубов этих выражений,  утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a-b3=a3-3a2b+3ab2-b3. Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a2-b2=a-ba+b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a2+ab+b2 и a2-ab+b2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

a-b2=a2-2ab+b2.

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a-b2=a-ba-b.

Раскроем скобки:

a-ba-b=a2-ab-ba+b2=a2-2ab+b2.

Формула доказана. Остальные ФСУ доказываются аналогично.

Примеры применения ФСУ

Цель использования формул сокращенного умножения – быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Пример 1. ФСУ

Упростим выражение 9y-(1+3y)2.

Применим формулу суммы квадратов и получим:

9y-(1+3y)2=9y-(1+6y+9y2)=9y-1-6y-9y2=3y-1-9y2

Пример 2. ФСУ

Сократим дробь 8×3-z64x2-z4.

Замечаем, что выражение в числителе – разность кубов, а в знаменателе – разность квадратов.

8×3-z64x2-z4=2x-z(4×2+2xz+z4)2x-z2x+z.

Сокращаем и получаем:

8×3-z64x2-z4=(4×2+2xz+z4)2x+z

Также ФСУ помогают вычислять значения выражений. Главное – уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79. Вместо громоздких вычислений, запишем:

79=80-1;792=80-12=6400-160+1=6241.

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент – выделение квадрата двучлена. Выражение 4×2+4x-3 можно преобразовать в вид 2×2+2·2·x·1+12-4=2x+12-4. Такие преобразования широко используются в интегрировании.

Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/formuly-sokraschennogo-umnozhenija/

Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Формулы всех форм сокращенного умножения. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Определение многочлена: многочлен – это сумма одночленов. Пример многочлена:

здесь мы видим сумму двух одночленов, а это и есть многочлен, т.е. сумма одночленов.

Слагаемые, из которых состоит многочлен, называются членами многочлена.

Является ли разность одночленов многочленом? Да, является, ведь разность легко приводится к сумме, пример: 5a – 2b = 5a + (-2b).

Одночлены тоже считают многочленами. Но в одночлене нет суммы, тогда почему его считают многочленом? А к нему можно прибавить ноль и получить его сумму с нулевым одночленом. Итак, одночлен – это частный случай многочлена, он состоит из одного члена.

Число ноль – это нулевой многочлен.

Стандартный вид многочлена

Что такое многочлен стандартного вида? Многочлен есть сумма одночленов и если все эти одночлены, составляющие многочлен, записаны в стандартном виде, кроме того среди них не должно быть подобных, тогда многочлен записан в стандартном виде.

Пример многочлена в стандартном виде:

здесь многочлен состоит из 2-х одночленов, каждый из которых имеет стандартный вид, среди одночленов нет подобных.

Теперь пример многочлена, который не имеет стандартный вид:

здесь два одночлена: 2a и 4a являются подобными. Надо их сложить, тогда многочлен получит стандартный вид:

Ещё пример:

Этот многочлен приведен к стандартному виду? Нет, у него второй член не записан в стандартом виде. Записав его в стандартном виде, получаем многочлен стандартного вида:

Степень многочлена

Что такое степень многочлена?

Степень многочлена определение:

Степень многочлена – наибольшая степень, которую имеют одночлены, составляющие данный многочлен стандартного вида.

Пример. Какова степень многочлена 5h? Степень многочлена 5h равна одному, ведь в этот многочлен входит всего один одночлен и степень его равна одному.

Другой пример. Какова степень многочлена 5a 2 h 3 s 4 +1? Степень многочлена 5a 2 h 3 s 4 + 1 равна девяти, ведь в этот многочлен входят два одночлена, наибольшую степень имеет первый одночлен 5a 2 h 3 s 4 , а его степень равна 9-ти.

Ещё пример. Какова степень многочлена 5? Степень многочлена 5 равна нулю. Итак, степень многочлена, состоящего только из числа, т.е. без букв, равна нулю.

Последний пример. Какова степень нулевого многочлена, т.е. нуля? Степень нулевого многочлена не определена.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов.Приведем примеры таких выражений:\(5a4 – 2a3 + 0,3a2 – 4,6a + 8 \)

\(xy3 – 5x2y + 9×3 – 7y2 + 6x + 5y – 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам,считая одночлен многочленом, состоящим из одного члена.

Например, многочлен\(8b5 – 2b \cdot 7b4 + 3b2 – 8b + 0,25b \cdot (-12)b + 16 \)

можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:\(8b5 – 2b \cdot 7b4 + 3b2 – 8b + 0,25b \cdot (-12)b + 16 = \)

\(= 8b5 – 14b5 + 3b2 -8b -3b2 + 16 \)

Приведем в полученном многочлене подобные члены:\(8b5 -14b5 +3b2 -8b -3b2 + 16 = -6b5 -8b + 16 \)

Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных.Такие многочлены называют многочленами стандартного вида.

За степень многочлена стандартного вида принимают наибольшую из степеней его членов.Так, двучлен \(12a2b – 7b \) имеет третью степень, а трехчлен \(2b2 -7b + 6 \) – вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени.Например:\(5x – 18×3 + 1 + x5 = x5 – 18×3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки – этопреобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:\(9a2b(7a2 – 5ab – 4b2) = \)\(= 9a2b \cdot 7a2 + 9a2b \cdot (-5ab) + 9a2b \cdot (-4b2) = \)

\(= 63a4b – 45a3b2 – 36a2b3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученныепроизведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее частовстречаются выражения \((a + b)2, \; (a – b)2 \) и \(a2 – b2 \), т. е. квадрат суммы, квадрат разности и разность квадратов.

Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)2 \) – это, конечно, не просто квадратсуммы, а квадрат суммы а и b.

Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в немоказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)2, \; (a – b)2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались стаким заданием при умножении многочленов:\((a + b)2 = (a + b)(a + b) = a2 + ab + ba + b2 = \)

\(= a2 + 2ab + b2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)2 = a2 + b2 + 2ab \) – квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a – b)2 = a2 + b2 – 2ab \) – квадрат разности равен сумме квадратов без удвоенного произведения.

\(a2 – b2 = (a – b)(a + b) \) – разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно – правые части левыми.Самое трудное при этом – увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколькопримеров использования формул сокращенного умножения.

Мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду. В этой статье мы для начала выясним, какой смысл несет в себе эта фраза.

Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров.

Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям . В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению.

Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде.

Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида , и многочлен стандартного вида не содержит подобных членов.

В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены.

Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду:

  • сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
  • после чего выполнить приведение подобных членов.

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Пример.

Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .

Решение.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5. Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.

На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены.

Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6, имеем 2·a 3 ·0,6=1,2·a 3, после чего – одночлен −b·a·b 4 ·b 5, имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10. Таким образом, .

В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.

Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов :

Так исходный многочлен принял стандартный вид −x·y+1.

Ответ:

5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10, .

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Пример.

Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Решение.

Сначала приводим все члены многочлена к стандартному виду: .

Теперь приводим подобные члены:

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена , которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5, степени членов , −0,5·z 2 и 11 равны соответственно 3, 2 и 0. Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .

Ответ:

Степень многочлена равна 5, а после расположения его членов по убывающим степеням переменной он принимает вид .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 17-е изд. – М. : Просвещение, 2008. – 240 с. : ил. – ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. – 17-е изд., доп. – М.: Мнемозина, 2013. – 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. – 3-е изд. – М.: Просвещение, 2010.- 368 с. : ил. – ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Источник: https://bogemasamara.ru/kalkulyator-onlain-uproshchenie-mnogochlena-umnozhenie-mnogochlenov/

Формулы сокращенного умножения таблица. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Формулы всех форм сокращенного умножения. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Yandex.RTB R-A-339285-1

Впервые тема ФСУ рассматривается в рамках курса “Алгебра” за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a – b 2 = a 2 – 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a – b 3 = a 3 – 3 a 2 b + 3 a b 2 – b 3
  5. формула разности квадратов: a 2 – b 2 = a – b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 – a b + b 2
  7. формула разности кубов: a 3 – b 3 = a – b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы – соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.


Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Формулу сокращенного прибавления. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Формулы всех форм сокращенного умножения. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо – в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ – раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности – включая административные, технические и физические – для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Формулы или правила сокращенного умножения используются в арифметике, а точнее – в алгебре, для более быстрого процесса вычисления больших алгебраических выражений. Сами же формулы получены из существующих в алгебре правил для умножения нескольких многочленов.

Использование данных формул обеспечивает достаточно оперативное решение различных математических задач, а также помогает осуществлять упрощение выражений.

Правила алгебраических преобразований позволяют выполнять некоторые манипуляции с выражениями, следуя которым можно получить в левой части равенства выражение, стоящее в правой части, или преобразовать правую часть равенства (чтобы получить выражение, стоящее в левой части после знака равенства).

Удобно знать формулы, применяемые для сокращенного умножения, на память, так как они нередко используются при решении задач и уравнений. Ниже перечислены основные формулы, входящие в данный список, и их наименование.

Квадрат суммы

Чтобы вычислить квадрат суммы, необходимо найти сумму, состоящую из квадрата первого слагаемого, удвоенного произведения первого слагаемого на второе и квадрата второго. В виде выражения данное правило записывается следующим образом: (а + с)² = a² + 2ас + с².

Квадрат разности

Чтобы вычислить квадрат разности, необходимо вычислить сумму, состоящую из квадрата первого числа, удвоенного произведения первого числа на второе (взятое с противоположным знаком) и квадрата второго числа. В виде выражения данное правило выглядит следующим образом: (а – с)² = а² – 2ас + с².

Разность квадратов

Формула разности двух чисел, возведенных в квадрат, равна произведению суммы этих чисел на их разность. В виде выражения данное правило выглядит следующим образом: a² – с² = (a + с)·(a – с).

Куб суммы

Чтобы вычислить куб суммы двух слагаемых, необходимо вычислить сумму, состоящую из куба первого слагаемого, утроенного произведения квадрата первого слагаемого и второго, утроенного произведения первого слагаемого и второго в квадрате, а также куба второго слагаемого. В виде выражения данное правило выглядит следующим образом: (а + с)³ = а³ + 3а²с + 3ас² + с³.

Сумма кубов

Согласно формуле, приравнивается к произведению суммы данных слагаемых на их неполный квадрат разности. В виде выражения данное правило выглядит следующим образом: а³ + с³ = (а + с)·(а² – ас + с²).

Пример. Необходимо вычислить объем фигуры, которая образована сложением двух кубов. Известны лишь величины их сторон.

Если значения сторон небольшие, то выполнить вычисления просто.

Если же длины сторон выражаются в громоздких числах, то в этом случае проще применить формулу “Сумма кубов”, которая значительно упростит вычисления.

Куб разности

Выражение для кубической разности звучит так: как сумма третьей степени первого члена, утроенного отрицательного произведения квадрата первого члена на второй, утроенного произведения первого члена на квадрат второго и отрицательного куба второго члена. В виде математического выражения куб разности выглядит следующим образом: (а – с)³ = а³ – 3а²с + 3ас² – с³.

Разность кубов

Формула разности кубов отличается от суммы кубов лишь одним знаком. Таким образом, разность кубов – формула, равная произведению разности данных чисел на их неполный квадрат суммы. В виде математического выражения разность кубов выглядит следующим образом: а 3 – с 3 = (а – с)(а 2 + ас + с 2).

Пример. Необходимо вычислить объем фигуры, которая останется после вычитания из объема синего куба объемной фигуры желтого цвета, которая также является кубом. Известна лишь величина стороны маленького и большого куба.

Если значения сторон небольшие, то вычисления довольно просты. А если длины сторон выражаются в значительных числах, то стоит применить формулу, озаглавленную “Разность кубов” (или “Куб разности”), которае значительно упростит вычисления.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.